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SUMMARY: Alkoxyl groups in alkenyllithiums can influence the stereochemistry of 

cyclization. The presence of n-butyllithium increases the stereoselectivity such 

that only one stereochemistry results; the presence of TMEDA negates the hetero- 

atom's influence so that only the other stereochemistry results. Yields are 33% 

to 44%. 

Intramolecular cyclizations of organolithium compounds containing olefinic units have been 

the subject of work reported by Wilson3 and by others4. Reports of influence on intermolecular 

additions of alkenyllithiums to double bonds having proximal oxygen functions5 encouraged us to 

investigate the cyclization of alkoxyl-containing alkenyllithiums, the intramolecular analogy. 

We felt our work could provide excellent complement to the intermolecular studies and increase 

the synthetic utility of the cyclization technique by providing for additional functionality in 

the cyclic product. 

Alkoxyl influence on organolithium cyclizations is best demonstrated by comparing the reac- 

tions of alkyl- and alkoxyl-substituted systems. The cyclization6 of the lithium reagent of 

6-chloro-3-methyl-1-hexene (l_) exclusively to trans-1,2-dimethylcyclopentane (2) provides such a 

basis for comparison and defines the steric course of the reaction for hexenyllithiums which have 

allylic substituents. Intramolecular heteroatom-metal complexation would oppose steric repulsion 

in allylic alkoxyl-substituted 5-hexenyllithiums. Therefore these systems provide a framework 

for studying alkoxyl influence on reactivity patterns and are the subject of this letter. 

Compound 2, prepared by the treatment of ally1 methyl ether with s-butyllithium followed by 
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7 . 8 
l-bromo-3-chloro-propane, can be cyclized in the presence of n-butyllithium , as depicted in 

Scheme I, to give cyclic material 5, which has cis stereochemistry. This stereochemistry is 

opposite to that of 2, which is obtained for the methyl analonue. In the absence of n-butyl- 

lithium, the heteroatom seems to be 

The cyclization of compound 2, 

9 
less influential, and a mixture of stereoisomers results. 

prepared 
10 

as indicated in Scheme II, provides an example of 
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heteroatom influence exerted by an alkoxyl group homoallylic to the double bond. Reactions X, Y, 

and Z in Scheme III show the cyclization chemistry. The relative stereochemistries of u and 11 
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were not proven by independent synthesis. Rather, they are assigned on the basis of the struc- 

tures proven for the products of the cyclizations of 2 under conditions analogous to those in 

reactions X and Y. And based on our observation that in lithium cyclizations of other alkoxyl- 

containing systems, n-butyllithium's presence invariably leads to an increase in heteroatom 

influence.'1 Reaction 2 provides further support for the stereochemical assignments and offers 

an interesting extention of the method's synthetic utility. As we had hoped, a single cyclic 

product, assigned structure 2, is afforded; it can be explained as a result of TMEDA's monopo- 

lizing of the metal's coordination site, which eliminates the possibility of acetal-metal inter- 

action and sends the reaction on the sterically-influenced pathway to 11. 

At this time, the basis for n-butyllithium's accentuation of the alkoxyl's influence is not 

clear, especially since less than a full equivalent is required. A control experiment (treatment 

of 9 with 2.5 equivalents of n-butyllithium under typical reactions leaves starting material _ 

unchanged) seems to rule out metal-halogen exchange as the source of the effect. 

In conclusion, we have described alkoxyl influence on organolithium cyclizations. In the 

presence of n-butyllithium, the reaction has the attractive feature of being stereoselective to 

either of two isomers, by the inclusion or exclusion of TMEDA. This capacity might compensate 

for the unattractive yields 
12 

reported here. The heteroatom influence we observed in lithium 

cyclizations and the attractive yields we had obtained for the cyclizations of alkenylaluminums 
13 

prompted us to look for heteroatom influence in the latter case. That work shows that the two 

features can be combined successfully and will be the subject of an upcoming report. 
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